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ABSTRACT
The availability of human stem cells heralds a new era for modeling normal and pathologic tissues and developing therapeutics. For example,

the in vitro recapitulation of normal and aberrant neurogenesis holds significant promise as a tool for de novo modeling of neurodevelop-

mental and neurodegenerative diseases. Translational applications include deciphering brain development, function, pathologies, traditional

medications, and drug discovery for novel pharmacotherapeutics. For the latter, human stem cell-based assays represent a physiologically

relevant and high-throughput means to assess toxicity and other undesirable effects early in the drug development pipeline, avoiding late-

stage attrition whilst expediting proof-of-concept of genuine drug candidates. Here we consider the potential of human embryonic, adult,

and induced pluripotent stem cells for studying neurological disorders and preclinical drug development. J. Cell. Biochem. 105: 1361–1366,

2008. � 2008 Wiley-Liss, Inc.
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A major challenge for experimental research of human

disease and drug discovery is the use of biologically relevant

methods of investigation. The human central nervous system (CNS)

is especially difficult to study due to its anatomical and functional

complexity, compounded by the limitations and/or cost of live

animal models, and the constraints for researching human subjects.

The human brain includes neurons, astrocytes, microglia, and

oligodendrocytes, which in turn comprises subtypes of cells with

specific phenotypes, localizations, and functions. Needless to say,

different cell-types contribute to different disease states requiring

cell-type specific modeling of disease-specific phenotypes and

pharmacologically relevant strategies for drug screening. To this

end, animal modeling has been a mainstay of the drug development

pipeline, with mice frequently used in pharmaceutical research and

development (R&D) as a nonclinical efficacy model. This is despite

the fact that drug testing in mice often fails to translate to human

studies, with murine results nonpredictive for treating neurode-

generative diseases such as Alzheimer’s disease [Schnabel, 2008].

There are many potential causes for the failed translation of

neuroactive drug trials from animal models to humans, including

species differences in drug penetration of the blood–brain barrier,

drug metabolism, and related toxicity, culminating in a variable

biological response. In addition, there is the more contentious

matter of less than optimal design rigor of testing regimes [Schnabel,

2008].
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Although noteworthy, it is not within the scope of this article to

consider in detail the merits and shortcomings of in vivo modeling,

but rather merely affirm the need for other relevant and

complementary methods for laboratory based studies of the human

CNS and preclinical identification of bona fide drug candidates. In

principle, in vitro human stem cell- and derivative cell-based

modeling represents a valuable line of investigation that is practical,

relatively cost-effective, and potentially able to accelerate the drug

development pipeline; fundamental objectives for the pharmaceu-

tical and biotechnology industries worldwide. Model systems could

include disease-specific or transgenic embryonic [Braam et al.,

2008], adult [Lovell et al., 2006; Ferrero et al., 2008; Murrell et al.,

2008; Zhang et al., 2008], or recently discovered induced pluripotent

[Takahashi et al., 2007; Yu et al., 2007; Park et al., 2008a,b] stem

cells (ES, AS, or iPS cells, respectively) combined with methods of

directed differentiation that mimic the critical stages of CNS

development in vivo and endogenous neuronal cell replacement for

adult CNS homeostasis. For in vitro assays using lineage-specific

cells with limited proliferative potential, stem cells represent a

scaleable supply of source cells for bulk derivative cell production.

While the efficient generation of neural-subtype cells from stem

cells remains a challenge, methods of neural induction are

improving [Cho et al., 2008]. Large numbers of high purity and

functional neurons [Li and Zhang, 2006; Schwartz et al., 2008] or

oligodendrocytes [Nistor et al., 2005; Jessberger et al., 2008] can
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potentially be prepared for pathomolecular analysis and/or high-

throughput screening of compound libraries.

Here we review the rapidly emerging area of stem cell-based

modeling of human brain disorders to decipher etiopathologies and

advance drug discovery. We propose that the traditional ineffi-

ciencies, high attrition rates, protracted R&D cycles, and elevated

costs inherent to drug development can be curtailed by using

relatively inexpensive and high-throughput in vitro human stem

cell-based assays as a first phase of discovery and preclinical

development in the pharmaceutical pipeline. In principle, transgenic

and disease specific human ES, AS, and iPS cells and their neural

derivatives represent important research tools that genuinely

emulate the underlying mechanisms of human neurodevelopmental

and neurodegenerative diseases and predict in vivo drug response.

HUMAN EMBRYONIC STEM CELLS

Since the first human ES cell lines were derived over a decade ago

[Thomson et al., 1998], hundreds have been produced worldwide,

including lines suitable for clinical application [Crook et al., 2007].

They are derived from supernumerary blastocysts by established

methods of isolation, culture and preservation. Human ES cells can

self-renew indefinitely and are pluripotent. Hence they can be

expanded to large numbers [Phillips et al., 2008] and be

differentiated into most cells of the human body, including the

CNS. These properties make them an ideal resource for high-

throughput cell-based assayology, including a potentially unlimited

supply of neural derivatives [Nat et al., 2007].

When derived from blastocysts identified by preimplantation

genetic diagnosis (PGD) as carrying congenital mutations for

specific disease states [Verlinsky et al., 2005; Mateizel et al., 2006;

Eiges et al., 2007; Ben-Yosef et al., 2008; Peura et al., 2008] or

following genetic manipulation [Urbach et al., 2004], human ES

cells afford new and relevant perspectives on human disorders.

Combined with effective methods of differentiation, they should

prove better than conventional mouse stem cell models for

recapitulating the human phenotype, and at the very least are

complementary to in vivo mouse models. Despite their potential,

only a few human ES cell models of CNS diseases have been reported

[Urbach et al., 2004; Verlinsky et al., 2005; Mateizel et al., 2006;

Eiges et al., 2007]. Moreover, the pharmaceutical industry has been

slow to adopt human ES cell-based screening despite a long

standing use of in vitro cellular assays and the provision of

guidelines for human ES cell research by organizations such as the

National Academy of Sciences (http://www.nasonline.org/), the

National Institutes of Health (http://www.nih.gov/), and the

International Society of Stem Cell Research (http://www.isscr.org/).

Interest has been tempered by ethical concerns and in some

countries legal restrictions for deriving and using stem cell lines

from human blastocysts.

In principle, there are three ways to derive human ES cell lines for

in vitro modeling of disease (Fig. 1A): (i) targeted gene disruption of

cells by for example RNA interference or homologous recombina-

tion; (ii) cell line isolation from congenitally defective preimplanta-

tion embryos; or (iii) cell line isolation from blastocysts produced by
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somatic cell nuclear transfer (SCNT). While there are examples of

targeted gene disruption and PGD-derived human ES cell lines,

derivation of human ES cells by SCNT is yet to be achieved. Whether

or not an SCNT approach is widely adopted once attained will

depend on the ethical concerns surrounding oocyte donation and

the success of alternative reprogramming methods such as iPS cell

generation described below.

Despite the potential of gene targeting in human ES cells,

progress has been hindered by poor transfection and cloning

efficiencies, with a handful of accessible cell lines seemingly

amenable to manipulation [Xia et al., 2007; Braam et al., 2008].

While for the most part achieving efficient gene delivery remains a

problem (i.e., >80% transduction efficiency), transient [Braam et al.,

2008] stable [Liew et al., 2007] and conditional [Vieyra and Goodell,

2007] expression systems are evolving, together with more

compatible methods of human ES cell culture. Adaptation of

stem cells to contemporary single cell and feeder-free culture

seemingly enhances transfection efficiency by avoiding sequestra-

tion of transfection reagents by fibroblasts and maximizing the

uptake of reagents by stem cells cultured as monolayers [Braam

et al., 2008].

Whereas genetically engineered stem cells typically serve as

models of monogenic disorders, ES cell lines derived from defective

PGD-embryos can potentially model diseases with complex

polygenic traits [Braude et al., 2002]. PGD is used as an adjunct

to in vitro fertilization and avoids selective pregnancy termination

by identifying genetic defects before embryo implantation.

Although traditionally performed by polymerase chain reaction

and fluorescence in situ hybridization, DNA chip (microarray)

technology offers a new approach to diagnosis or risk prediction of

more complex disorders. The use of ‘‘gene chips’’ for preimplanta-

tion genetic screening is currently being evaluated by the European

Society of Human Reproduction and Embryology (ESHRE) towards

developing a code of practice (http://www.eshre.com/emc.asp).

While normal PGD-embryos can be used for assisted reproduc-

tion, mutant embryos can provide human ES cells exhibiting the

same genotype and related defects [Verlinsky et al., 2005; Mateizel

et al., 2006; Eiges et al., 2007; Ben-Yosef et al., 2008; Peura et al.,

2008]. Once generated, cell lines can be used to decode the pathways

through which mutations cause an inherited phenotype. Examples

of PGD-derived ES cells representing CNS related disorders include

lines for Huntington’s disease [Verlinsky et al., 2005] and fragile X

syndrome [Eiges et al., 2007]. Once established, these and other

PGD-cell lines have the potential to provide a valuable and

unlimited source of undifferentiated and differentiating ES cells and

derivative neurons, glia, and other somatic cells for investigating the

cause, effect, and treatment of aberrant human biology on a cellular

level.

HUMAN ADULT STEM CELLS

In contrast to human ES cells, AS cells reside in specialized niches of

mature tissues. Nonetheless, they fulfill the basic criteria of

stemness, having the capacity to self-renew and give rise to one

or more differentiated cell types. The discovery of new AS cell types
JOURNAL OF CELLULAR BIOCHEMISTRY



Fig. 1. Schematic illustration of stem cell-based disease modeling and drug discovery. A: Human ES cell disease-models can potentially be produced by: (i) targeted gene

disruption of cells derived from healthy blastocysts, (ii) cell line isolation from congenitally defective preimplantation embryos identified by PGD, or (iii) cell line isolation from

blastocysts produced by SCNT. B: Human AS cell disease-models can be derived by: (i) targeted gene manipulation of cells from a healthy donor, or (ii) cell line isolation from a

patient. C: Human iPS cell disease-models can be produced by reprogramming somatic cells from either a healthy or patient donor, with the former requiring targeted gene

disruption to mimic mutations relevant to a disease state. High throughput screening of compound libraries with undifferentiated stem cells and their neural derivatives is

subsequently performed to assess the efficacy (including toxicity and other undesirable effects) of potential drug candidates.
in human tissues is ongoing. In addition to expected lineages, many

show plasticity seemingly unrelated to their in vivo niche.

Neural stem (NS) cells of the developing CNS are highly

proliferative and generate neurons and glia under strict spatial

and temporal regulation [Temple, 2001]. Until recently, the adult

human brain was thought to be devoid of neurogenic activity. The

seminal reports by Altman and Das [1965] of proliferating cells in

the mature rat hippocampus, and Reynolds and Weiss [1992] of in
JOURNAL OF CELLULAR BIOCHEMISTRY
vitro isolation, expansion and differentiation of adult mouse striatal

cells paved the way for identifying NS cells in the adult human

brain. NS cells isolated from human subventricular zone and

hippocampal dentate gyrus confirmed their capacity for self-

renewal and multipotentiality [Kukekov et al., 1999; Roy et al.,

2000; Palmer et al., 2001; Westerlund et al., 2003].

The main impetus for NS cell research has been to provide

transplantable cells for neurotrauma and neurodegenerative
STEM CELL MODELS OF NEUROLOGICAL DISEASES 1363



diseases, with less interest directed to disease-modeling and drug

discovery. However, the specific relevance of neurogenesis to

emerging theory of neurodevelopmental disorders such as schizo-

phrenia and autism is bolstering interest in NS cells as research tools.

For example, antidepressant drugs used to treat schizophrenia and

autism increase cell proliferation in adult hippocampus, suggesting

a role for neurogenic activity in the etiology and treatment of these

disorders [Santarelli et al., 2003; Encinas et al., 2006]. Disease-

specific or genetically engineered NS cell lines represent cellular

systems for discerning disease etiology and the actions of existing

and novel drug candidates (Fig. 1B).

While human NS cell cultures are a gold standard for neurological

disease modeling, limited accessibility to source tissues impedes

their use. For example, surgical or postmortem removal of brain

tissues is insufficient for the requirements of large-scale cell-based

drug screening. Tissue biopsies from olfactory epithelium represent

more practical sources [Roisen et al., 2001; Winstead et al., 2005].

Importantly, new evidence supports the differentiation of AS cells

across lineages so that easily accessible stem cells could be used in

the therapy of degenerative diseases of the CNS [Ross and Verfaillie,

2008]. For example, neurons and glia can be produced from skin

derived precursor cells isolated from human scalp and foreskin

[Toma et al., 2005], marrow stromal stem cells [Cho et al., 2005;

Togel and Westenfelder, 2007], umbilical cord stem cells [Sanchez-

Ramos et al., 2001; Low et al., 2008], and adipose tissue-derived

stromal cells [Safford et al., 2002; Schaffler and Buchler, 2007].

Given their accessibility, abundance, ethical justification, and

plasticity, these non-NS cells represent viable alternatives for

discerning etiopathologies and pharmaco-screening. Examples

include disease specific AS cells from Parkinson’s disease and

amyotrophic lateral sclerosis (ALS) patients [Ferrero et al., 2008;

Murrell et al., 2008; Zhang et al., 2008]. Neurological disease-

specific AS cells potentially offer a superior model system than

conventional immortalized human neural cell lines often used by

the pharmaceutical industry.

Despite the demonstrated potential of AS cells, the derivation of

functional neural cells remains a challenge. The majority of studies

claiming generation of specific neural cells from AS cells do not

include definitive characterization, with many only showing pan-

neuronal marker expression (e.g., beta-III-tubulin, MAP-2, Neu-N).

Few studies profile neurotransmitter subtypes and electrophysio-

logical properties of differentiated neurons [Wislet-Gendebien et al.,

2005; Fernandes et al., 2006]. Nevertheless, similar to ES cells, AS

cells can have an immediate impact as models for human CNS

diseases and research tools for drug discovery. Compound screening

will benefit from assays of undifferentiated stem cells as well as their

lineage specific progenies (i.e., neuronal and nonneuronal/non-

target). Analyses of stem cells are important due to their role in the

physiological homeostasis of the CNS and other tissues/organs

relevant to systemic drug effects.

INDUCED PLURIPOTENT STEM CELLS

The recent creation of iPS cells by somatic cell reprogramming to an

embryonic stem cell-like state offers another tool to study human
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disease, including developmental and degenerative disorders of the

CNS, and model-based drug development. Similar to human ES and

AS cells, iPS cells can either be modified by targeted gene disruption

or created from patients as disease-specific cell lines (Fig. 1C) [Dimos

et al., 2008; Park et al., 2008a]. Currently, oncogenes and viral

vectors are used to produce iPS cells, which are unsuitable for cell

replacement therapy. While the method of reprogramming is likely

to be less of an issue for disease modeling and drug discovery, it

remains to be shown that viral integration and transduction of

foreign genes does not confound endogenous cellular processes. In

addition, it is unclear whether iPS cells are functionally equivalent

to ES cells.

The first example of a disease-specific iPS cell line was generated

from a patient with ALS [Dimos et al., 2008]. The ALS lines provide

proof-of-principle of modeling neurological disorders by repro-

gramming fibroblasts and differentiation to nerve cells for

characterization. Interestingly, mouse models of ALS rely on

mutations of the superoxide dismutase-1 gene, which only partially

emulate the various forms of the disease in humans. By contrast, iPS

cell lines have been derived from patients with mild and severe

forms of ALS and are expected to more faithfully recapitulate

genetic patterning and variant pathophysiology.

A more recent report of disease-specific iPS cells describes the

generation of lines from patients with a variety of diseases with

either Mendelian or complex inheritance, including Down syn-

drome, Gaucher disease type III, Parkinson disease, and Huntington

disease [Park et al., 2008a]. Again, by carrying specific genetic

lesions these cell lines and the wave of other cell lines likely to

follow will hopefully provide new and accurate insights to diseases

previously deemed difficult or nigh on impossible to investigate.

CONCLUDING REMARKS

Overall, less than 10% of compounds that enter clinical phase testing

are approved for market, at an estimated cost of US$1.2–1.7 billion

per drug [Kaitin, 2008; Sollano et al., 2008]. Historically, CNS class

compounds that are new chemical entities have a slightly higher

success rate of �14% [Dimasi, 2001]. The high failure rate is

reflected by the number of new drugs approved for use in the

category of neurology by the US Food and Drug Administration

(FDA) in 2006, 2007, and 2008 with one, four, and one drugs

approved respectively (http://www.centerwatch.com/patient/drugs/

druglist.html). There is clearly a need to increase productivity and

decrease the cost of drug development using strategies that

concomitantly bolster innovation and facilitate R&D for early

assurance of drug safety and efficacy. To this end, human stem cell

based models of CNS development, function, and disease represent a

useful research tool to complement in vivo experimentation.
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